Detection of Exogenous γ-Hydroxybutyric Acid in Rat Blood Exosomes
To find a method to distinguish exogenous gamma-hydroxybutyrate (GHB) from endogenous GHB by establishing ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) based on exosome for quantitative detection of GHB in the rat blood. Adult male SD rats were divided into 1 h, 5 h, 10 h administration group and control group. After 1 h, 5 h and 10 h of single precursor of GHB gamma-butyrolactone (GBL) intraperitoneal injection in administration groups, 5 mL blood was collected from the abdominal aorta. Meanwhile, the control group was given a same dose of normal saline, and 5 mL blood was collected at 1 h. Among the 5 mL blood, 0.5 mL was directly detected by HPLC-MS after pretreatment, and exosomes were extracted from the remaining blood by differential centrifugation and detected. The concentration of GHB in the control group was (87.36±33.48) ng/mL, and the concentration with administration at 1 h, 5 h and 10 h was (110 400.00±1 766.35) ng/mL, (1 479.00±687.01) ng/mL and (133.60±12.17) ng/mL, respectively. The results of exosome detection showed that no peak GHB signal was detected in the control group and the 10 h administration group, and the concentrations of GHB at 1 h and 5 h administration groups were (91.47±33.44) ng/mL and (49.43±7.05) ng/mL, respectively. GHB was detected in blood exosome by UPLC-MS, which indicated that exogenous GHB could be detected in plasma exosomes, while endogenous GHB could not be detected, suggesting that this method may be used as a basis to determine whether there is exogenous drug intake.